CONTRIBUTION OF PLACENTAL MITOCHONDRIAL DAMAGE TO PREECLAMPSIA

Matthew W. Rappelt1, Karima Ait-Assa, PhD2; Mary Schulz, B.A.; David Guttermann, MD; Andreas Beyer, PhD; and Jennifer McIntosh DO, MS
1Medical College of Wisconsin-MD Program; 2Department of Medicine; 3Cardiovascular Center; Milwaukee, Wisconsin 53226, 4Department of Obstetrics and Gynecology

INTRODUCTION
• Preeclampsia (PE) is a hypertensive disorder of pregnancy with accompanying proteinuria and/or systemic disturbances; and the leading cause of maternal and perinatal mortality worldwide.1
• The underlying etiology of preeclampsia is poorly understood. Prior research indicates that the underlying mechanism is related to placently derived oxidative stress.2,3
• Recent cardiovascular studies have implicated mitochondrial dysfunction and reactive oxygen species (ROS) as a key players in the pathogenesis of hypertension and cardiac disease. Preeclampsia may follow a similar mode of pathogenesis.4,5

HYPOTHESIS
Pregnancies complicated by PE have decreased mitochondrial integrity as manifested by increased mitochondrial DNA (mtDNA) damage, and increased fission which results in decreased ATP production.

METHODS
Maternal and Fetal Placenta tissues: Preeclampsia/Non-Preeclampsia

Mitochondrial DNA integrity:
• Mitochondrial DNA Damage (PCR based assay)

RESULTS
Quantitative PCR Assessment of Mitochondrial DNA Damage:

Figure 1. Preeclamptic samples have increased mitochondrial DNA damage. In aggregate, the control group (N=6) has 0.032 lesions per 10kb, and the preeclamptic group (N=6), 0.236 lesions/10kb (7-fold increase, p=0.011). When divided into fetal and maternal groups (control and preeclamptic groups N=4 for maternal and fetal), fetal placenta shows significantly greater lesions (p=0.049) while maternal placenta does not display statistically significant differences in DNA lesions.

Relative expression of Mitofusin (MFN) and Phosphorylated Dynamin Related Protein-1 (p-DRP1):

Figure 2. Preeclamptic samples have an increase in mitochondrial fission relative to controls. Preeclamptic samples displayed lower levels of MFN expression (N=18, p=0.08), and significantly greater levels of pDRP (N=18, p<0.05). This overall trend was maintained in both fetal and maternal groups.

CONCLUSION
• In patients with preeclampsia, greater levels of mitochondrial DNA damage are observed than in placenta from healthy pregnancies.
• Preeclamptic mitochondria express greater levels of phosphorylated DRP and less MFN than healthy controls. This indicates greater levels of mitochondrial fission, an indicator of mitochondrial stress.
• Mitochondrial dysfunction may play a key role in the pathogenesis of PE and may serve as a novel target for the treatment of the disease.

REFERENCES

ACKNOWLEDGEMENTS
• Summer research fellowship funding was provided for by National Heart, Lung, and Blood Institute.
• Additional funding support was provided by the Advancing a Healthier Wisconsin Endowment.
• Thank you to Laura Norwood-Toro, Jasmine Lynn, Jim Heisner, and Amadou Camara for all your help!